Maximally Stable Local Description for Scale Selection

نویسندگان

  • Gyuri Dorkó
  • Cordelia Schmid
چکیده

Scale and affine-invariant local features have shown excellent performance in image matching, object and texture recognition. This paper optimizes keypoint detection to achieve stable local descriptors, and therefore, an improved image representation. The technique performs scale selection based on a region descriptor, here SIFT, and chooses regions for which this descriptor is maximally stable. Maximal stability is obtained, when the difference between descriptors extracted for consecutive scales reaches a minimum. This scale selection technique is applied to multi-scale Harris and Laplacian points. Affine invariance is achieved by an integrated affine adaptation process based on the second moment matrix. An experimental evaluation compares our detectors to HarrisLaplace and the Laplacian in the context of image matching as well as of category and texture classification. The comparison shows the improved performance of our detector.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Object Recognition Using Local Affine Frames on Maximally Stable Extremal Regions

Methods based on distinguished regions (transformation covariant detectable regions) have achieved considerable success in object recognition, retrieval and matching problems in both still images and videos. The chapter focuses on a method exploiting local coordinate systems (local affine frames) established on maximally stable extremal regions. We provide a taxonomy of affine-covariant constru...

متن کامل

A Novel Image Structural Similarity Index Considering Image Content Detectability Using Maximally Stable Extremal Region Descriptor

The image content detectability and image structure preservation are closely related concepts with undeniable role in image quality assessment. However, the most attention of image quality studies has been paid to image structure evaluation, few of them focused on image content detectability. Examining the image structure was firstly introduced and assessed in Structural SIMilarity (SSIM) measu...

متن کامل

Local Affine Frames for Wide-Baseline Stereo

A novel procedure for establishing wide-baseline correspondence is introduced. Tentative correspondences are established by matching photometrically normalised colour measurements represented in a local affine frame. The affine frames are obtained by a number of affine invariant constructions on robustly detected maximally stable extremal regions of data-dependent shape. Several processes for l...

متن کامل

A Comparison study of the Local Feature Detectors

In the first part of this report, the performance of four state of art detectors is given, both in Repeatability Check and Image Retrieval. In the Repeatabiilty and Matching test,MSER works best in the viewpoint and illunimation change, while SIFT,SURF and Hessian Affine are proved to be robust to the scale changes, image Blur and JEPG compression.On the other hand,in the Image Retrieval Test,S...

متن کامل

Performance Evaluation of Local Descriptors for Affine Invariant Region Detector

Local feature descriptors are widely used in many computer vision applications. Over the past couple of decades, several local feature descriptors have been proposed which are robust to challenging conditions. Since they show different characteristics in different environment, it is necessary to evaluate their performance in an intensive and consistent manner. However, there has been no relevan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006